John R. Buchanan, Ph. D., P. E.
Assistant Professor
Biosystems Engineering & Soil Science

Institute of Agriculture
The University of Tennessee

Question

- When using drip dispersal, should the quality of the effluent be a design parameter?
- Will primary-quality effluent cause significant differences in the design and operation of drip systems as compared to secondary-quality effluent?

Concerns

- Will higher strength wastewater form a clogging layer that could change the hydraulic characteristics of the soil?
- Is the distribution of the effluent into the soil sufficiently dispersed such to maintain aerobic conditions even with higher BOD loading?

Argument

- Drip can maximize soil-water-oxygen contact
- Aerobic conditions can be maintained
- Dosing and resting cycles

Thus

- Biomat formation will be minimal even with higher strength effluent
- With forward-flushing of drip laterals and back flushing of filters, the drip system will work well with high-strength effluent

Hypothesis

- No significant difference....
 - In biomat formation
 - In emitter clogging
 - Recognizing that the flushing schedule will be modified for the primary-quality water
 - Both laterals and filters
 - In the quality of the soil-water beneath the application of effluent
 - Organic carbon
 - Total nitrogen
 - Soil micro-organisms

Difficulties of Field Research

- Have to minimize variables
 - Need consistent and dependable source of wastewater
- Need to install two identical drip fields
 - Same soil type
 - One field receives septic tank effluent
 - The other field receives secondary-quality effluent
 - Wastewater needs to be from the same source

Partial Solution

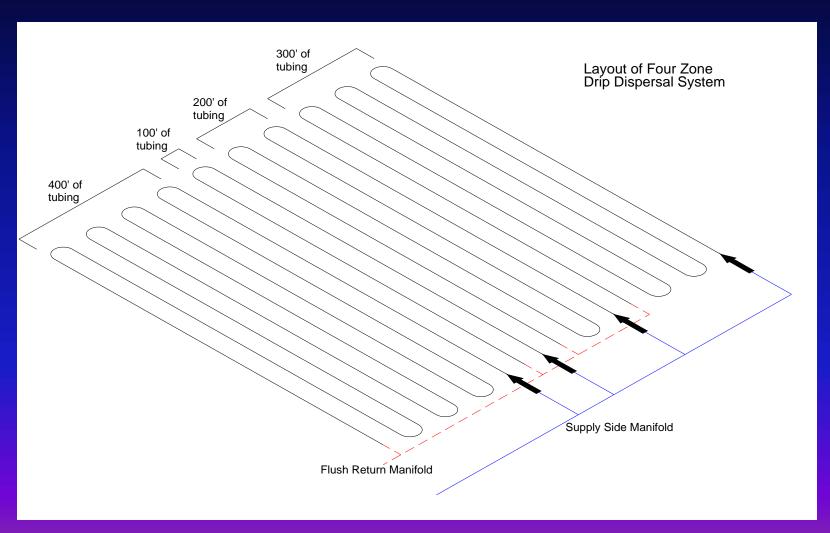
- Subdivision with STEP system
 - Approximately 100 homes
 - Recirculating sand filter
 - Drip dispersal with 90,000 feet of drip tubing

Measured Parameters

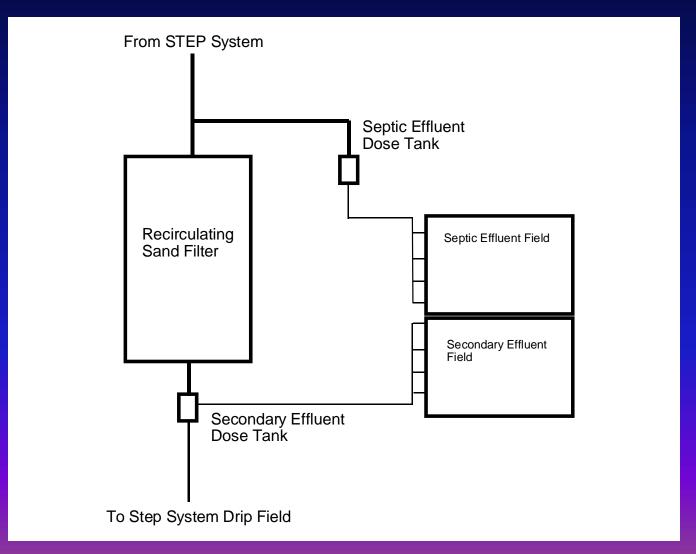
- Soil Solution
 - Suction cup lysimeters
 - Randomly selected locations within drip field
 - Each field has 12lysimeters
 - Three at 12"
 - Three at 24"
 - Three at 36"
 - Three at 48"
 - (or to bedrock)

Installation of Sensors in Very Heavy Soil

- Hand augers are good work-out devices
 - portable hydraulicallydriven soil probes are easier on the back


Creating Two Drip Fields

- 1000 feet of tubing in each field
 - Laterals on two-foot spacing
 - Emitters on two-foot spacing
 - 0.62 gallon per hour emission, pressure compensated
 - Vibratory plow
 - Four zones each field



Layout – One Field

Layout – Big Picture

Slide 12

Before RSF

- Septic tank effluent
 - Tapped into
 pressurized sewer
 line that feeds into
 the recirculating
 sand filter
 - Butterfly valve directs effluent to dose tank

After RSF

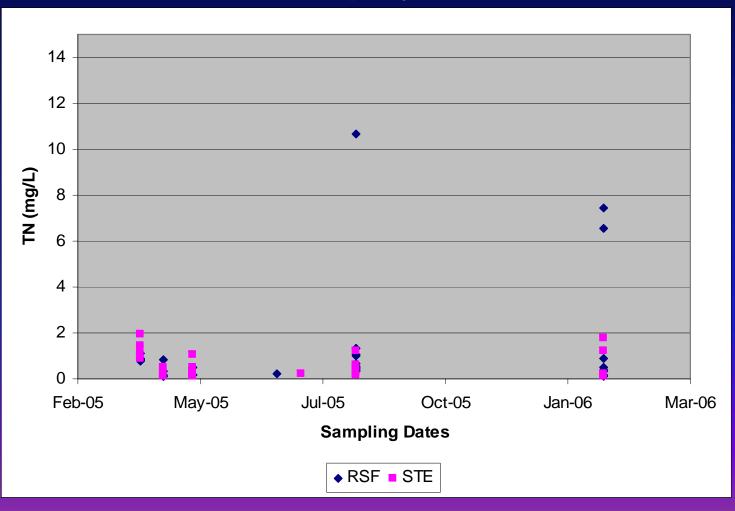
- Secondary quality effluent
 - Dose pump placed in same tank used to pressurize the drip lines

Soil Loading

- Load at full design rate
 - Soil rated at 0.1 gpd/ft²
 - Each field is 2000 ft²
 - 200 gallons per day per field
 - Receive this water everyday
 - grows great grass

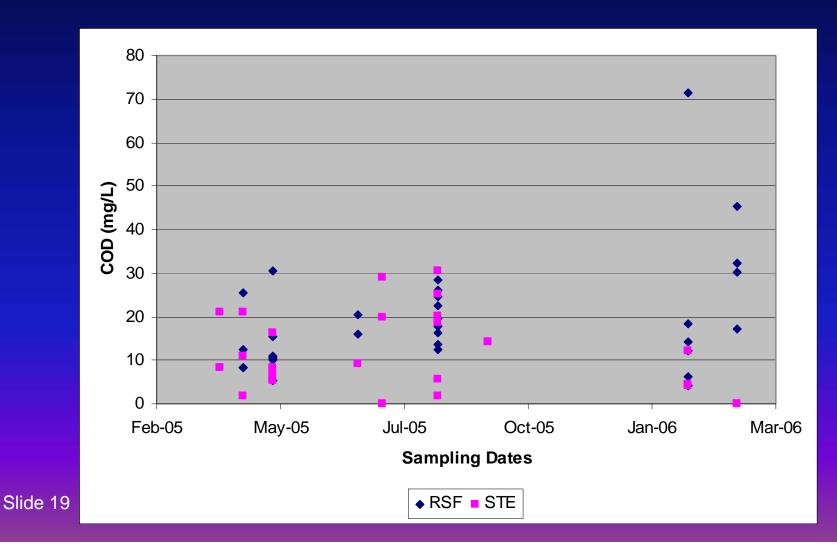
Sample Collection

- Collect soil-solution samples
 - pull a vacuum, typically on a Friday
 - pull samples on Monday
- During summer
 - often not enough soilwater available for sampler



Nothing Conclusive, Yet

- Approximately nine months of operation
 - samples from drawn from STE and RSF lysimeters are not statistically different
 - total nitrogen
 - total phosphate
 - total carbon
 - chemical oxygen demand
 - current samples are not different from background
 - three sets of samples taken before initiation of land application


Total Nitrogen

Composite of 12", 24", 36", & 48" Suction Cup Lysimeters

Chemical Oxygen Demand

Composite of 12" 24" 36" & 48" Suction Cup Lysimeters

Visual Differences?

At this time,

- The soil is renovating the higher strength wastewater
- The water is going somewhere
 - 12" samples are rare evapotranspiration
 - 48" samples were frequent but soil was not saturated
- High strength side is slowly losing pressure due to emitter and filter clogging
 - however, lines and filters have not been flushed yet

Acknowledgements

- Project Funding
 - Tennessee Valley Authority
 - Jennifer Brogdon, Project Leader
 - Tennessee Department of Agriculture
 - Nonpoint Source Program in contract with U. S. EPA
 - TDEC Ground Water Protection
 - Tennessee Onsite Wastewater Association (TOWA)
- THANKS!

Questions

Institute of Agriculture
The University of Tennessee

